Late-Stage Diagenetic Concretions in the Murray Formation, Gale Crater, Mars

1Vivian Z. Sun et al. (>10)
Icarus (in Press) Link to Article [https://doi.org/10.1016/j.icarus.2018.12.030]
1Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109
Copyright Elsevier

Concretions are prevalent features in the generally lacustrine deposits of the Murray formation in Gale crater. In this work, we document the morphologic, textural, and chemical properties of these concretions throughout 300 meters of Murray formation stratigraphy from Mars Science Laboratory observations between Sols 750-1900. We interpret these observations to constrain the timing and composition of post-depositional fluid events at Gale crater. We determine that the overall diversity of concretion morphology, size, texture, and chemistry throughout the Murray formation indicates that concretions formed in multiple, likely late diagenetic, episodes with varying fluid chemistries. Four major concretion assemblages are observed at distinct stratigraphic intervals and approximately correlate with major distinct chemical enrichments in Mg-S-Ni-Cl, Mn-P, and Ca-S, among other local enrichments. Different concretion size populations and complex relationships between concretions and veins also suggest multiple precipitation events at Gale crater. Many concretions likely formed during late diagenesis after sediment compaction and lithification, based on observations of concretions preserving primary host rock laminations without differential compaction. An upsection decrease in overall concretion size corresponds to an inferred upsection decrease in porosity and permeability, thus constraining concretion formation as postdating fluid events that produced initial cementation and porosity loss. The combined observations of late diagenetic concretions and distinct chemical enrichments related to concretions allow constraints to be placed on the chemistry of late stage fluids at Gale crater. Collectively, concretion observations from this work and previous studies of other diagenetic features (veins, alteration halos) suggest at least six post-depositional events that occurred at Gale crater after the deposition of the Murray formation.

Pressure-induced amorphization in plagioclase feldspars: A time-resolved powder diffraction study during rapid compression

1Melissa Sims et al.(>10)
Earth and Planetary Science Letters 507, 166-174 Link to Article [https://doi.org/10.1016/j.epsl.2018.11.038]
1Department of Geosciences, Stony Brook University, Stony Brook, NY 11794-2100, USA
Copyright Elsevier

The pressure-induced amorphization of the two endmembers of the plagioclase ((Na1−xCax)Al1+xSi3−xO8) solid-solution, anorthite (CaAl2Si2O8) and albite (NaAlSi3O8), has been studied as a function of compression rate by means of time-resolved powder diffraction. Anorthite and albite were compressed in a diamond anvil cell to 80 GPa at multiple rates from 0.05 GPa/s to 80 GPa/s. The amorphization pressure decreases with increasing compression rate. This negative strain rate sensitivity indicates a change in deformation mechanism in the plagioclase solid-solution endmembers from brittle to ductile with increasing compression rate. The presented data support the previously proposed shear deformation mechanism for the amorphization of plagioclase. Furthermore, amorphization progresses over a wide pressure range suggesting heterogeneous amorphization, similar to observations based on recovered material from shock-compression experiments of plagioclase. Our experiments support the contention that amorphization pressures for plagioclase may occur at lower pressures than usually considered.