Daiki Yamamoto1, Minami Kuroda1, Shogo Tachibana1,2, Naoya Sakamoto3, and Hisayoshi Yurimoto1,4
Astrophysical Journal 865, 98 Link to Article [DOI: 10.3847/1538-4357/aadcee]
1Department of Natural History Sciences, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
2UTokyo Organization for Planetary Space Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
3Isotopic Imaging Laboratory, Hokkaido University, Sapporo, 001-0021, Japan
4Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, 252-210, Japan
Meteoritic evidence suggests that oxygen isotopic exchange between 16O-rich amorphous silicate dust and 16O-poor water vapor occurred in the early solar system. In this study, we experimentally investigated the kinetics of oxygen isotopic exchange between submicron-sized amorphous forsterite grains and water vapor at protoplanetary disk-like low pressures of water vapor. The isotopic exchange reaction rate is controlled either by diffusive isotopic exchange in the amorphous structure or by the supply of water molecules from the vapor phase. The diffusive oxygen isotopic exchange occurred with a rate constant D (m2 s−1) = (1.5 ± 1.0) × 10−19 exp[−(161.5 ± 14.1 (kJ mol−1))R−1(1/T−1/1200)] at temperatures below ~800–900 K, and the supply of water molecules from the vapor phase could determine the rate of oxygen isotopic exchange at higher temperatures in the protosolar disk. On the other hand, the oxygen isotopic exchange rate dramatically decreases if the crystallization of amorphous forsterite precedes the oxygen isotopic exchange reaction with amorphous forsterite. According to the kinetics for oxygen isotopic exchange in protoplanetary disks, original isotopic compositions of amorphous forsterite dust could be preserved only if the dust was kept at temperatures below 500–600 K in the early solar system. The 16O-poor signatures for the most pristine silicate dust observed in cometary materials implies that the cometary silicate dust experienced oxygen isotopic exchange with 16O-poor water vapor through thermal annealing at temperatures higher than 500–600 K prior to their accretion into comets in the solar system.
, most of previous chemical evolution models indicate that the observed early appearance and large dispersion of
in Galactic halo stars at
favors shorter coalescence times of 1–10 Myr. We argue that this is not the case for the models assuming the formation of the Galactic halo from clustering of subhalos with different star formation histories as suggested by Ishimaru et al. We present a stochastic chemical evolution model of the subhalos, in which the site of the r-process is assumed to be mainly NSMs with a coalescence timescale of
. In view of the scarcity of NSMs, their occurrence in each subhalo is computed with a Monte Carlo method. Our results show that the less massive subhalos evolve at lower metallicities and generate highly r-process-enhanced stars. An assembly of these subhalos leaves behind the large star-to-star scatters of
in the Galactic halo as observed. However, the observed scatters of [Sr/Ba] at low metallicities indicate the presence of an additional site that partially contributes to the enrichment of light neutron-capture elements such as Sr. The high enhancements of
at low metallicities found in our low-mass subhalo models also qualitatively reproduce the abundance signatures of the stars in the recently discovered ultra-faint dwarf galaxy Reticulum II. Therefore, our results suggest NSMs as the dominant sources of r-process elements in the Galactic halo.