Analysis of meteoritic activity in the Vth-XVth centuries using an extended survey of European Medieval Sources

1María José Martíneza, 2Francisco J. Marcob
Icarus (in Press) Link to Article [https://doi.org/10.1016/j.icarus.2018.06.015]
1Universidad Politécnica de Valencia. Dept. Matemàtica Aplicada. IUMPA. Camino de Vera SN. 46022. Valencia. Spain
2Universitat Jaume I. Dep. Matemàtiques. IMAC. Campus de Riu Sec. 12071 Castellón. Spain
Copyright Elsevier

The distribution of meteors streams throughout a year from the 5th to the 15th century is investigated, based on a new compilation of meteor records in the diverse European Medieval sources. The records of meteor showers and storms in the chronicles of Korea, Japan, China and Arab have also been considered, and compare their appearance dates with those of showers obtained above, as well as with modern observations. We found that the three sets of data are in agreement with each other, the Perseids, Leonids, and Lyrids being best represented.

The origin of the unique achondrite Northwest Africa 6704: Constraints from petrology, chemistry and Re–Os, O and Ti isotope systematics

1Yuki Hibiya et al. (>10)
Geochimica et Cosmochimica Acta (in Press) Link to Article[https://doi.org/10.1016/j.gca.2018.04.031]
1Department of Earth and Planetary Science, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan
Copyright Elsevier

Northwest Africa (NWA) 6704 is a unique achondrite characterized by a near-chondritic major element composition with a remarkably intact igneous texture. To investigate the origin of this unique achondrite, we have conducted a combined petrologic, chemical, and 187Re–187Os, O, and Ti isotopic study. The meteorite consists of orthopyroxene megacrysts (En55–57Wo3–4Fs40–42; Fe/Mn = 1.4) up to 1.7 cm in length with finer interstices of olivine (Fa50–53; Fe/Mn = 1.1–2.1), chromite (Cr# ∼ 0.94), awaruite, sulfides, plagioclase (Ab92An5Or3) and merrillite. The results of morphology, lattice orientation analysis, and mineral chemistry indicate that orthopyroxene megacrysts were originally hollow dendrites that most likely crystallized under high super-saturation and super-cooling conditions (1–102 °C/h), whereas the other phases crystallized between branches of the dendrites in the order of awaruite, chromite → olivine → merrillite → plagioclase. In spite of the inferred high super-saturation, the remarkably large size of orthopyroxene can be explained as a result of crystallization from a melt containing a limited number of nuclei that are preserved as orthopyroxene megacryst cores having high Mg# or including vermicular olivine. The Re–Os isotope data for bulk and metal fractions yield an isochron age of 4576 ± 250 Ma, consistent with only limited open system behavior of highly siderophile elements (HSE) since formation. The bulk chemical composition is characterized by broadly chondritic absolute abundances and only weakly fractionated chondrite-normalized patterns for HSE and rare earth elements (REE), together with substantial depletion of highly volatile elements relative to chondrites. The HSE and REE characteristics indicate that the parental melt and its protolith had not undergone significant segregation of metals, sulfides, or silicate minerals. These combined results suggest that a chondritic precursor to NWA 6704 was heated well above its liquidus temperature so that highly volatile elements were lost and the generated melt initially contained few nuclei of relict orthopyroxene, but the melting and subsequent crystallization took place on a timescale too short to allow magmatic differentiation. Such rapid melting and crystallization might occur as a result of impact on an undifferentiated asteroid. The O–Ti isotope systematics (Δ17O = −1.052 ± 0.004, 2 SD; ε50Ti = 2.28 ± 0.23, 2 SD) indicate that the NWA 6704 parent body sampled the same isotopic reservoirs in the solar nebula as the carbonaceous chondrite parent bodies. This is consistent with carbonaceous chondrite-like refractory element abundances and oxygen fugacity (FMQ = −2.6) in NWA 6704. Yet, the Si/Mg ratio of NWA 6704 is remarkably higher than those of carbonaceous chondrites, suggesting significant nebular fractionation of forsterite in its provenance.