The nature of the L chondrite parent body’s disruption as deduced from high‐pressure phases in the Sixiangkou L6 chondrite

1Shaolin Li, 2,3Weibiao Hsu
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13110]
1Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, China
2School of Astronomy and Space Sciences, Nanjing University, Nanjing, China
3Space Science Institute, Macau University of Science and Technology, Macau, China
Published by arrangement with John Wiley & Sons

The disruption of the L chondrite parent body (LCPB) at ~470 Ma is currently the best‐documented catastrophic celestial impact event, based on the large number of L chondritic materials associated with this event. Uranium‐lead (U‐Pb) dating of apatite and its high‐pressure decomposition product, tuite, in the Sixiangkou L6 chondrite provides a temporal link to this event. The U‐Pb system of phosphates adjacent to shock melt veins was altered to varying degrees and the discordance of the U‐Pb system correlates closely with the extent of apatite decomposition. This suggests that the U‐Pb system of apatite could be substantially disturbed by high‐temperature pulse during shock compression from natural impacts, at least on the scale of mineral grains. Although many L chondrites can be temporally related to the catastrophic LCPB impact event, the shock conditions experienced by each individual meteorite vary. This could be due to the different geologic settings of these meteorites on their parent body. The shock pressure and duration derived from most meteorites may only reflect local shock features rather than the impact conditions, although they could provide lower limits to the impact conditions. The Sixiangkou shock duration (~4 s), estimated from high‐pressure transformation kinetics, provides a lower limit to the high‐pressure pulse of the LCPB disruption impact. Combined with available literature data of L chondrites associated with this impact event, our results suggest that the LCPB suffered a catastrophic collision with a large projectile (with a diameter of at least 18–22 km) at a low impact velocity (5–6 km s−1). This is consistent with astronomical estimates based on the dynamical evolution of L chondritic asteroids.

Raman spectroscopy of shocked enstatite‐rich meteorites

1Bidong Zhang, 1Sean R. Shieh, 1Anthony C. Withers, 1Audrey Bouvier
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13106]
1Department of Earth Sciences, Centre for Planetary Science and Exploration, University of Western Ontario, London, Ontario, Canada
Published by arrangement with John Wiley & Sons

We present Raman patterns of enstatite in different classes of enstatite‐rich chondrites and achondrites of various shock levels as previously reported from petrographic observations and X‐ray diffraction analyses. Thin sections or mineral separates of four enstatite chondrites (LaPaz Icefield [LAP] 02225, MacAlpine Hills [MAC] 02837, Pecora Escarpment [PCA] 91020, and Itqiy), three aubrites (Larkman Nunatak [LAR] 04316, Khor Temiki, and Allan Hills [ALH] 84008), and a ureilite (Sayh al Uhaymir [SaU] 559) were examined by laser Raman spectroscopy. We find that the frequencies of fundamental Raman peaks of enstatites from the chondrites and aubrites deviate by ≤2 cm−1 from the values for unshocked enstatite. This small difference implies a negligible effect of shock metamorphism on peak positions. Significant differences (<6 cm−1) for peak positions are found for the pyroxenes of SaU 559 and may be attributed to minor substitution of Fe and Ca for Mg. Linear regressions of peak widths of enstatite chondrites against their established shock stages show a strong positive correlation for each mode (r2 > 0.94). From this linear relationship, the 343 and 1014 cm−1 peaks of the aubrites coincide with S4 determined from petrography. For Itqiy, we find S4–5, while the shock levels of SaU 559 exceed the petrologic scheme (S1–6), suggesting that the ureilite might have sustained multiple shock events or have been deformed in a high‐pressure environment. Alternatively, for Itqiy (peak 343 cm−1) and SaU 559 (all peaks) enstatites, minor substitutions of Fe and Ca for Mg may have further broadened their peak widths.