Multiple impact events on the L‐chondritic parent body: Insights from SIMS U‐Pb dating of Ca‐phosphates in the NWA 7251 L‐melt breccia

1Ye Li,1,2Weibiao Hsu
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13061]
1Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, China
2Space Science Institute, Macau University of Science and Technology, Macau, China
Published by arrangement with John Wiley & Sons

Here we report in situ secondary ionization mass spectrometry Ca‐phosphate U‐Pb ages for an L‐impact melt breccia (NWA 7251), which are integrated with petrological and mineral chemical studies of this meteorite. NWA 7251 is a heavily shocked rock that is composed mainly of the chondrite host, impact melt portion, and melt veins (crosscutting and pervasive type). The host is an L4 chondrite that has been shocked to S4. The impact melt portion has a fine‐grained igneous texture, and is composed mainly of olivine, low‐Ca pyroxene, high‐Ca pyroxene, and albitic glass. The impact melt was generated at pressure of >30–35 GPa and temperature of >1300–1500 °C during an impact event. The Ca‐phosphate grains in the host were affected by a shock heating event. Most of the Ca‐phosphate grains in the melt were neocrystallized, but relatively large grains enclosed by or adjacent to metal veins or melt globules are likely inherited. The U‐Pb isotopic systematics of Ca‐phosphates in NWA 7251 yield an upper intercept age of 4457 ± 56 Ma and a lower intercept age of 574 ± 82 Ma on the normal U‐Pb concordia diagram. The age of 4457 ± 56 Ma is interpreted to be related to an early shocking event rather than the thermal metamorphism of the parent body. The impact melt and veins in NWA 7251 were generated at 574 ± 82 Ma, resulting from disruption of the L chondrite parent body.

Hapke mixture modeling applied to VNIR spectra of mafic mineral mixtures and shergottites: Implications for quantitative analysis of satellite data

1Jennifer K. Harris, 1Peter M. Grindrod
1Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13065]
1Earth Sciences, Natural History Museum, , London, UK
Published by arrangement with John Wiley & Sons

The mineralogy of Mars is well understood on a qualitative level at a global scale due to satellite data. Quantitative analysis of visible and near‐infrared (VNIR) satellite data is a desirable but nontrivial task, due partly to the nonlinearity of VNIR reflectance spectra from the mineral mixtures of the Martian surface. In this study, we investigated the use of the Hapke radiative transfer model to generate linearly mixed single scattering albedo data from nonlinearly mixed VNIR reflectance data and then quantitatively analyzed them using the linear spectral mixture model. Simplifications to the Hapke equation were tested accounting for variables that would be unknown when using satellite data. Mineral mixture spectra from the RELAB spectral library were degraded to test the robustness of the unmixing technique in the face of data that mimic some of the complexities of satellite spectral data collected at Mars. A final test was performed on spectra from shergottite meteorites to assess the technique against real Martian mineral mixtures. The simplified Hapke routine produced robust abundance estimates within 5–10% accuracy when applied to laboratory standard spectra from the synthetic mixtures of igneous minerals in agreement with previous studies. The results of tests involving degraded data to mimic the low spectral contrast of the Martian surface and the lack of a priori knowledge of the constituent mineral spectral endmembers, however, were less encouraging, with errors in abundance estimation greater than 25%. These results cast doubt on the utility of Hapke unmixing for the quantitative analysis of VNIR data of the surface of Mars.