Phase transitions in MgSiO3 post-perovskite in super-Earth mantles

1,2,3Koichiro Umemoto, 4,5,6Renata M. Wentzcovitch, 3,7Shunqing Wu, 3Min Ji, 3Cai-Zhuang Wang, 3Kai-Ming Ho
Earth and Planetary Science Letters 478, 40-45 Link to Article [https://doi.org/10.1016/j.epsl.2017.08.032]
1Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
2Department of Earth Sciences, University of Minnesota, 310 Pillsbury drive SE, Minneapolis, MN 55455, USA
3Ames Laboratory, US DOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
4Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
5Department of Earth and Environmental Sciences, Columbia University, New York, NY 10027, USA
6Lamont–Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
7Department of Physics, Xiamen University, Xiamen 361005, China
Copyright Elsevier

The highest pressure form of the major Earth-forming mantle silicate is MgSiO3 post-perovskite (PPv). Understanding the fate of PPv at TPa pressures is the first step for understanding the mineralogy of super-Earths-type exoplanets, arguably the most interesting for their similarities with Earth. Modeling their internal structure requires knowledge of stable mineral phases, their properties under compression, and major element abundances. Several studies of PPv under extreme pressures support the notion that a sequence of pressure induced dissociation transitions produce the elementary oxides SiO2and MgO as the ultimate aggregation form at ∼3 TPa. However, none of these studies have addressed the problem of mantle composition, particularly major element abundances usually expressed in terms of three main variables, the Mg/Si and Fe/Si ratios and the Mg#, as in the Earth. Here we show that the critical compositional parameter, the Mg/Si ratio, whose value in the Earth’s mantle is still debated, is a vital ingredient for modeling phase transitions and internal structure of super-Earth mantles. Specifically, we have identified new sequences of phase transformations, including new recombination reactions that depend decisively on this ratio. This is a new level of complexity that has not been previously addressed, but proves essential for modeling the nature and number of internal layers in these rocky mantles.

Kamenetsk—A new impact structure in the Ukrainian Shield

1Eugene Gurov,2Nikolay Nikolaenko,1Helena Shevchuk,1Anatoly Yamnichenko
Meteoritics & Planetary Science (in Press) Link to Article [DOI: 10.1111/maps.12951]
1Institute of Geological Sciences, National Academy of Sciences of Ukraine, Kiev, Ukraine
2Expedition No. 37 of Municipal Company “Kirovgeologiya,” Gorniy, Kirovograd, Ukraine
Published by arrangement with John Wiley & Sons

The Kamenetsk impact structure is a deeply eroded simple crater that formed in crystalline rocks of the Ukrainian Shield. This study presents structural, lithologic, and shock metamorphic evidence for an impact origin of the Kamenetsk structure, which was previously described as a paleovolcano. The Kamenetsk structure is an oval depression that is 1.0–1.2 km in diameter and 130 m deep. The structure is deeply eroded, and only the lower part of the sequence of lithic breccia has been preserved in the deepest part of the crater to recent time, while the predominant part of impact rocks and postimpact sediments was eroded. Manifestations of shock metamorphism of minerals, especially planar deformation features in quartz and feldspars, were determined by petrographic investigations of lithic breccia that allowed us to determine the impact origin of the Kamenetsk structure. The erosion of the crater and surrounding target to a minimal depth of 220 m preceded the deposition of the postimpact sediments. The time of the formation of the Kamenetsk structure is bracketed within a wide interval from 2.0 to 2.1 Ga, the age of the crystalline target rocks, to the Late Miocene age of the sediments overlaying the crater. The deep erosion of the structure suggests it is probably Paleozoic in age.

New high pressure experiments on sulfide saturation of high-FeO∗ basalts with variable TiO2 contents – Implications for the sulfur inventory of the lunar interior

1Shuo Ding, 2Taylor Hough, 1Rajdeep Dasgupta
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2017.10.025https://doi.org/10.1016/j.gca.2017.10.025]
1Department of Earth, Environmental and Planetary Sciences, Rice University, 6100 Main Street, MS 126, Houston, TX 77005, USA
2Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island 02912, USA
Copyright Elsevier

In order to constrain sulfur concentration in intermediate to high-Ti mare basalts at sulfide saturation (SCSS), we experimentally equilibrated FeS melt and basaltic melt using a piston cylinder at 1.0-2.5 GPa and 1400-1600 °C, with two silicate compositions similar to high-Ti (Apollo 11: A11, ∼11.1 wt.% TiO2, 19.1 wt.% FeO∗, and 39.6 wt.% SiO2) and intermediate-Ti (Luna 16, ∼5 wt.% TiO2, 18.7 wt.% FeO∗, and 43.8 wt.% SiO2) mare basalts. Our experimental results show that SCSS increases with increasing temperature, and decreases with increasing pressure, which are similar to the results from previous experimental studies. SCSS in the A11 melt is systematically higher than that in the Luna 16 melt, which is likely due to higher FeO∗, and lower SiO2 and Al2O3 concentration in the former. Compared to the previously constructed SCSS models, including those designed for high-FeO∗ basalts, the SCSS values determined in this study are generally lower than the predicted values, with overprediction increasing with increasing melt TiO2 content. We attribute this to the lower SiO2 and Al2O3 concentration of the lunar magmas, which is beyond the calibration range of previous SCSS models, and also more abundant FeTiO3 complexes in our experimental melts that have higher TiO2 contents than previous models’ calibration range. The formation of FeTiO3 complexes lowers the activity of FeO∗, View the MathML source, and therefore causes SCSS to decrease. To accommodate the unique lunar compositions, we have fitted a new SCSS model for basaltic melts of >5wt.% FeO∗ and variable TiO2 contents. Using previous chalcophile element partitioning experiments that contained more complex Fe-Ni-S sulfide melts, we also derived an empirical correction that allows SCSS calculation for basalts where the equilibrium sulfides contain variable Ni contents of 10-50 wt.%. At the pressures and temperatures of multiple saturation points, SCSS of lunar magmas with compositions from picritic glasses, mare basalts, to young lunar meteorites vary from 2600 to 4800 ppm for basalt equilibration with a pure FeS melt and from 1400 to 2600 ppm for basalt equilibration with a Fe-rich sulfide melt containing 30 wt.% Ni. The measured S contents in these proposed near-primary lunar magmas are lower than the predicted SCSS at the conditions of their last equilibration with the lunar mantle, indicating no sulfide retention in the lunar mantle source during partial melting. Sulfide exhaustion during partial melting in the lunar mantle also supports the theory that the bulk silicate moon is depleted in highly siderophile elements. Based on the measured S contents and the estimated degree of melting, the estimated S contents for the mantle source of A15 green glass and A15 mare basalts is 10-23 ppm; for A17 orange glass is 25-62 ppm, for A12 mare basalts is 27-92 ppm, and for A11 basalt is 35-120 ppm. Consideration of SCSS decrease due to the presence of Ni in the sulfide melt does not change these mantle S abundance estimates for <30 wt.% Ni in the sulfide. The inferred S contents support the notion that the lunar mantle is heterogeneous in terms of S. Although variable among different groups, the inferred S abundance of up to 120 ppm in the lunar mantle falls near the lower end of the S content of the depleted terrestrial mantle such as the MORB source.

Hf-W chronology of CR chondrites: Implications for the timescales of chondrule formation and the distribution of 26Al in the solar nebula

1Gerrit Budde, 1,2Thomas S. Kruijer, 1Thorsten Kleine
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2017.10.014]
1Institut für Planetologie, University of Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
2Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
Copyright Elsevier

Renazzo-type carbonaceous (CR) chondrites are distinct from most other chondrites in having younger chondrule 26Al-26Mg ages, but the significance of these ages and whether they reflect true formation times or spatial variations of the 26Al/27Al ratio within the solar protoplanetary disk are a matter of debate. To address these issues and to determine the timescales of metal-silicate fractionation and chondrule formation in CR chondrites, we applied the short-lived 182Hf-182W chronometer to metal, silicate, and chondrule separates from four CR chondrites. We also obtained Mo isotope data for the same samples to assess potential genetic links among the components of CR chondrites, and between these components and bulk chondrites.

All investigated samples plot on a single Hf-W isochron and constrain the time of metal-silicate fractionation in CR chondrites to 3.6±0.6 million years (Ma) after the formation of Ca-Al-rich inclusions (CAIs). This age is indistinguishable from a ∼3.7 Ma Al-Mg age for CR chondrules, suggesting not only that metal-silicate fractionation and chondrule formation were coeval, but also that these two processes were linked to each other. The good agreement of the Hf-W and Al-Mg ages, combined with concordant Hf-W and Al-Mg ages for angrites and CV chondrules, provides strong evidence for a disk-wide, homogeneous distribution of 26Al in the early solar system. As such, the young Al-Mg ages for CR chondrules do not reflect spatial 26Al/27Al heterogeneities but indicate that CR chondrules formed ∼1–2 Ma later than chondrules from most other chondrite groups.

Metal and silicate in CR chondrites exhibit distinct nucleosynthetic Mo and W isotope anomalies, which are caused by the heterogeneous distribution of the same presolar s-process carrier. These data suggest that the major components of CR chondrites are genetically linked and therefore formed from a single reservoir of nebular dust, most likely by localized melting events within the solar protoplanetary disk. Taken together, the chemical, isotopic, and chronological data for components of CR chondrites imply a close temporal link between chondrule formation and chondrite accretion, indicating that the CR chondrite parent body is one of the youngest meteorite parent bodies. The relatively late accretion of the CR parent body is consistent with its isotopic composition (for instance the elevated 15N/14N) that suggests a formation at a larger heliocentric distance, probably beyond the orbit of Jupiter. As such, the accretion age of the CR chondrite parent body of ∼3.6 Ma after CAI formation provides the earliest possible time at which Jupiter’s growth could have led to scattering of carbonaceous meteorite parent bodies from beyond its orbit into the inner solar system.