David Nesvorný1, David Vokrouhlický2, Luke Dones1, Harold F. Levison1, Nathan Kaib3, and Alessandro Morbidelli4
Astrophysical Journal 845, 27 Link to Article [https://doi.org/10.3847/1538-4357/aa7cf6]
1Department of Space Studies, Southwest Research Institute, 1050 Walnut St., Suite 300, Boulder, CO 80302, USA
2Institute of Astronomy, Charles University, V Holešovičkách 2, CZ-18000 Prague 8, Czech Republic
3H.L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, USA
4Département Cassiopée, University of Nice, CNRS, Observatoire de la Côte d’Azur, Nice, F-06304, France
Comets are icy objects that orbitally evolve from the trans-Neptunian region into the inner solar system, where they are heated by solar radiation and become active due to the sublimation of water ice. Here we perform simulations in which cometary reservoirs are formed in the early solar system and evolved over 4.5 Gyr. The gravitational effects of Planet 9 (P9) are included in some simulations. Different models are considered for comets to be active, including a simple assumption that comets remain active for
perihelion passages with perihelion distance
. The orbital distribution and number of active comets produced in our model is compared to observations. The orbital distribution of ecliptic comets (ECs) is well reproduced in models with
and without P9. With P9, the inclination distribution of model ECs is wider than the observed one. We find that the known Halley-type comets (HTCs) have a nearly isotropic inclination distribution. The HTCs appear to be an extension of the population of returning Oort-cloud comets (OCCs) to shorter orbital periods. The inclination distribution of model HTCs becomes broader with increasing
, but the existing data are not good enough to constrain
from orbital fits.
is required to obtain a steady-state population of large active HTCs that is consistent with observations. To fit the ratio of the returning-to-new OCCs, by contrast, our model implies that
, possibly because the detected long-period comets are smaller and much easier to disrupt than observed HTCs.
Day: October 23, 2017
Destruction of Refractory Carbon in Protoplanetary Disks
Dana E. Anderson1, Edwin A. Bergin2, Geoffrey A. Blake1, Fred J. Ciesla3, Ruud Visser4, and Jeong-Eun Lee5
Astrophysical Journal 845, 13 Link to Article [https://doi.org/10.3847/1538-4357/aa7da1]
1Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
2Department of Astronomy, University of Michigan, 1085 S. University, Ann Arbor, MI 48109-1107, USA
3Department of Geophysical Sciences, The University of Chicago, 5734 South Ellis Ave., Chicago, IL 60637, USA
4European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748, Garching, Germany
5School of Space Research, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea
The Earth and other rocky bodies in the inner solar system contain significantly less carbon than the primordial materials that seeded their formation. These carbon-poor objects include the parent bodies of primitive meteorites, suggesting that at least one process responsible for solid-phase carbon depletion was active prior to the early stages of planet formation. Potential mechanisms include the erosion of carbonaceous materials by photons or atomic oxygen in the surface layers of the protoplanetary disk. Under photochemically generated favorable conditions, these reactions can deplete the near-surface abundance of carbon grains and polycyclic aromatic hydrocarbons by several orders of magnitude on short timescales relative to the lifetime of the disk out to radii of ~20–100+ au from the central star depending on the form of refractory carbon present. Due to the reliance of destruction mechanisms on a high influx of photons, the extent of refractory carbon depletion is quite sensitive to the disk’s internal radiation field. Dust transport within the disk is required to affect the composition of the midplane. In our current model of a passive, constant-αdisk, where α = 0.01, carbon grains can be turbulently lofted into the destructive surface layers and depleted out to radii of ~3–10 au for 0.1–1 μm grains. Smaller grains can be cleared out of the planet-forming region completely. Destruction may be more effective in an actively accreting disk or when considering individual grain trajectories in non-idealized disks.
An ALMA Survey of CO Isotopologue Emission from Protoplanetary Disks in Chamaeleon I
Long F1 et al. (>10)
Astrophysical Journal 844, 99 Link to Article [https://doi.org/10.3847/1538-4357/aa78fc]
1Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Haidian Qu, 100871 Beijing, China
The mass of a protoplanetary disk limits the formation and future growth of any planet. Masses of protoplanetary disks are usually calculated from measurements of the dust continuum emission by assuming an interstellar gas-to-dust ratio. To investigate the utility of CO as an alternate probe of disk mass, we use ALMA to survey 13CO and C18O J = 3–2 line emission from a sample of 93 protoplanetary disks around stars and brown dwarfs with masses from
in the nearby Chamaeleon I star-forming region. We detect 13CO emission from 17 sources and C18O from only one source. Gas masses for disks are then estimated by comparing the CO line luminosities to results from published disk models that include CO freeze-out and isotope-selective photodissociation. Under the assumption of a typical interstellar medium CO-to-H2 ratio of 10−4, the resulting gas masses are implausibly low, with an average gas mass of ~0.05 M Jup as inferred from the average flux of stacked 13CO lines. The low gas masses and gas-to-dust ratios for Cha I disks are both consistent with similar results from disks in the Lupus star-forming region. The faint CO line emission may instead be explained if disks have much higher gas masses, but freeze-out of CO or complex C-bearing molecules is underestimated in disk models. The conversion of CO flux to CO gas mass also suffers from uncertainties in disk structures, which could affect gas temperatures. CO emission lines will only be a good tracer of the disk mass when models for C and CO depletion are confirmed to be accurate.