Chondrule heritage and thermal histories from trace element and oxygen isotope analyses of chondrules and amoeboid olivine aggregates

1Emmanuel Jacquet,2Yves Marrocchi
Meteoritics & Planetary Science (in Press) Link to Article [DOI: 10.1111/maps.12985]
1Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS & Muséum National d’Histoire Naturelle, UMR 7590, Paris, France
2Centre de Recherches Pétrographiques et Géochimiques, CNRS, Université de Lorraine, UMR 7358, Vandoeuvre-lès-Nancy, France
Publishedby arrangement with John Wiley & Sons

We report combined oxygen isotope and mineral-scale trace element analyses of amoeboid olivine aggregates (AOA) and chondrules in ungrouped carbonaceous chondrite, Northwest Africa 5958. The trace element geochemistry of olivine in AOA, for the first time measured by LA-ICP-MS, is consistent with a condensation origin, although the shallow slope of its rare earth element (REE) pattern is yet to be physically explained. Ferromagnesian silicates in type I chondrules resemble those in other carbonaceous chondrites both geochemically and isotopically, and we find a correlation between 16O enrichment and many incompatible elements in olivine. The variation in incompatible element concentrations may relate to varying amounts of olivine crystallization during a subisothermal stage of chondrule-forming events, the duration of which may be anticorrelated with the local solid/gas ratio if this was the determinant of oxygen isotopic ratios as proposed recently. While aqueous alteration has depleted many chondrule mesostases in REE, some chondrules show recognizable subdued group II-like patterns supporting the idea that the immediate precursors of chondrules were nebular condensates.

Zhamanshin astrobleme provides evidence for carbonaceous chondrite and post-impact exchange between ejecta and Earth’s atmosphere

1Tomáš Magna, 2Karel Žák, 3Andreas Pack, 4,5Frédéric Moynier, 4Bérengère Mougel, 3Stefan Peters, 2Roman Skála, 2Šárka Jonášová, 6Jiří Mizera, 6Zdeněk Řanda
Nature Communications 8, 261, Link to Article [doi:10.1038/s41467-017-00192-5]
1Czech Geological Survey, Klárov 3, Prague 1, CZ-118 21, Czech Republic
2Institute of Geology of the Czech Academy of Sciences, v.v.i., Rozvojová 269, Prague 6, CZ-165 00, Czech Republic
3Geowissenschaftliches Zentrum, Abteilung Isotopengeologie, Universität Göttingen, Goldschmidtstraße 1, Göttingen, D-37077, Germany
4Institut de Physique du Globe de Paris, Université Paris Diderot, 1 rue Jussieu, Paris, F-75005, France
5Insitut Universitaire de France, Paris, F-75005, France
6Nuclear Physics Institute of the Czech Academy of Sciences, v.v.i., Husinec-Řež, CZ-250 68, Czech Republic

We currently do not have a copyright agreement with this publisher and cannot display the abstract here