Model for the origin, ascent, and eruption of lunar picritic magmas

1Malcolm J. Rutherford, 1James W. Head, 1Alberto E. Saal, 2Erik Hauri, 3Lionel Wilson
American Mineralogist 102, 2045-2053 Link to Article [DOI
https://doi.org/10.2138/am-2017-5994]
1Department of Geological Sciences, Brown University, Providence, Rhode Island 02912, U.S.A.
2Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, D.C. 20015, U.S.A.
3Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, U.K.
Copyright: The Mineralogical Society of America

A model for the origin, ascent, and eruption of the lunar A17 orange glass magma has been constructed using petrological constraints from gas solubility experiments and from analyses of the lunar sample 74220 to better determine the nature and origin of this unique explosive eruption. Three stages of the eruption have been identified. Stage 1 of the eruption model extends from ~550 km, the A17 orange glass magma source region based on phase equilibria studies, to 50 km depth in the Moon. Stage 2 extends from ~50 km to 500 m, where a C-O-H-S gas phase formed and grew in volume based on melt inclusion analyses and measurements. The volume of the gas phase at 500 m depth below the surface is calculated to be 7 to 15 vol% of the magma (closed-system) using the minimum and maximum estimates of CO, H2O, and S loss from the melt. In Stage 3, depths shallower than ~450 m, the rising magma exsolved an additional 800–900 ppm H2O and 300 ppm S, increasing the moles in the gas by a factor of 3 to 4. The closed-system gas phase is calculated to reach ~70 vol% at ~130 m depth, enough to fragment the magma and form pyroclastic beads. However, fragmentation (bead formation) is interpreted to have occurred at depths ranging from 600 to 300 m below the lunar surface based on the pressure necessary to explain the C content of the orange glass beads. The gas volume (70%) required to fragment the ascending magma at this depth is a factor of ~5 greater than the volume determined for closed-system degassing of an orange glass magma at 500 m, strongly implying that the gas was produced by open-system degassing as the magma ascended from greater depths.

Formation of the dike carrying the magma up from the ~550 km deep source is considered to occur by a crack propagation mechanism (Wilson and Head 2003, 2017). The rapid dike-propagation process facilitates gas collection by open-system degassing in the upper part of the dike. This is necessary to achieve the gas volumes required for magma fragmentation at 600 m depths, and the magma-ascent velocities to explain the wide areal distribution of the bead deposit. The explosive nature of the picritic orange glass eruption, and the homogeneity of the bead compositions, are consistent with this gas-assisted eruption scenario, as is the evidence of a Fe-metal forming reduction event during Stage 2 followed by a Stage 3 oxidation event in the ascending magma.

Carbon isotopic variation in ureilites: Evidence for an early, volatile-rich Inner Solar System

1Jean-Alix Barrat, 1Pierre Sansjofre, 2,3Akira Yamaguchi, 4Richard C. Greenwood, 5Philippe Gillet
Earth and Planetary Science Letters 478, 143-149 Link to Article [https://doi.org/10.1016/j.epsl.2017.08.039]
1Laboratoire Geosciences Océan (UMR CNRS 6538), Université de Bretagne Occidentale et Institut Universitaire Européen de la Mer, Place Nicolas Copernic, 29280 Plouzané, France
2National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan
3Department of Polar Science, School of Multidisciplinary Science, Graduate University for Advanced Sciences, Tachikawa, Tokyo 190-8518, Japan
4Planetary and Space Sciences, School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
5Earth and Planetary Science Laboratory (EPSL), Ecole Polytechnique Fédérale de Lausanne, Institute of Condensed Matter Physics, Station 3, CH-1015 Lausanne, Switzerland
Copyright Elsevier

We analyzed the C isotopic compositions of 32 unbrecciated ureilites, which represent mantle debris from a now disrupted, C-rich, differentiated body. The δ13C values of their C fractions range from −8.48 to +0.11‰. The correlations obtained between δ13C, δ18O and Δ17O values and the compositions of the olivine cores, indicate that the ureilite parent body (UPB) accreted from two reservoirs displaying distinct O and C isotopic compositions. The range of Fe/Mg ratios shown by its mantle was not the result of melting processes involving reduction with C (“smelting”), but was chiefly inherited from the mixing of these two components. Because smelting reactions are pressure-dependent, this result has strong implications for the size of the UPB, and points to a large parent body, at least 690 km in diameter. It demonstrates that C-rich primitive matter distinct from that represented by carbonaceous chondrites was present in some areas of the early inner Solar System, and could have contributed to the growth of the terrestrial planets. We speculate that differentiated, C-rich bodies, or debris produced by their disruption, were an additional source of volatiles during the later accretion stages of the rocky planets, including Earth.