The Stubenberg meteorite—An LL6 chondrite fragmental breccia recovered soon after precise prediction of the strewn field

Bischoff1 et al. (>10)*
Meteoritics & Planetary Science (in Press) Link to Article [DOI: 10.1111/maps.12883]

1Institut für Planetologie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm Str. 10, Münster D-48149, Germany
*Find the extensive, full author and affiliation list on the publishers website
Published by arrangement with John Wiley & Sons

On March 6, 2016 at 21:36:51 UT, extended areas of Upper Austria, Bavaria (Germany) and the southwestern part of the Czech Republic were illuminated by a very bright bolide. This bolide was recorded by instruments in the Czech part of the European Fireball Network and it enabled complex and precise description of this event including prediction of the impact area. So far six meteorites totaling 1473 g have been found in the predicted area. The first pieces were recovered on March 12, 2016 on a field close to the village of Stubenberg (Bavaria). Stubenberg is a weakly shocked (S3) fragmental breccia consisting of abundant highly recrystallized rock fragments embedded in a clastic matrix. The texture, the large grain size of plagioclase, and the homogeneous compositions of olivine (Fa31.4) and pyroxene (Fs25.4) clearly indicate that Stubenberg is an LL6 chondrite breccia. This is consistent with the data on O, Ti, and Cr isotopes. Stubenberg does not contain solar wind-implanted noble gases. Data on the bulk chemistry, IR spectroscopy, cosmogenic nuclides, and organic components also indicate similarities to other metamorphosed LL chondrites. Noble gas studies reveal that the meteorite has a cosmic ray exposure (CRE) age of 36 ± 3 Ma and that most of the cosmogenic gases were produced in a meteoroid with a radius of at least 35 cm. This is larger than the size of the meteoroid which entered the Earth’s atmosphere, which is constrained to <20 cm from short-lived radionuclide data. In combination, this might suggest a complex exposure history for Stubenberg.

Sedimentological and petrographic analysis of drill core FC77-1 from the flank of the central uplift, Flynn Creek impact structure, Tennessee

David R. ADRIAN1, David T. KING Jr.1, Steven J. JARET2, Jens ORMÖ3,Lucille W. PETRUNY1, Justin J. HAGERTY4, and Tenielle A. GAITHER4
Meteoritics & Planetary Science (in Press) Link to Article [DOI: 10.1111/maps.12862]

1Department of Geosciences, Auburn University, Auburn, Alabama 36849, USA
2Department of Geosciences, Stony Brook University, Stony Brook, New York 11794, USA
3Centro de Astrobiologıa (INTA-CSIC), Madrid, Spain
4USGS, Astrogeology Science Center, Flagstaff, Arizona 86001, USA
Published by arrangement with John Wiley & Sons

Drill core FC77-1 on the flank of the central uplift, Flynn Creek impact structure, Tennessee, contains 175 m of impact breccia lying upon uplifted Lower Paleozoic carbonate target stratigraphy. Sedimentological analysis of this 175-m interval carbonate breccia shows that there are three distinct sedimentological units. In stratigraphic order, unit 1 (175–109 m) is an overall coarsening-upward section, whereas the overlying unit 2 (109–32 m) is overall fining-upward. Unit 3 (32–0 m) is a coarsening-upward sequence that is truncated at the top by postimpact erosion. Units 1 and 3 are interpreted as debris or rock avalanches into finer sedimentary deposits within intracrater marine waters, thus producing progressively coarser, coarsening-upward sequences. Unit 2 is interpreted to have formed by debris or rock avalanches into standing marine waters, thus forming sequential fining-upward deposits. Line-logging of clasts ranging from 5 mm to 1.6 m, and thin-section analysis of selected drill core samples (including clasts < 5 mm), both show that the Flynn Creek impact breccia consists almost entirely of dolostone clasts (90%), with minor components of cryptocrystalline melt clasts, chert and shale fragments, and clastic grains. Cryptocrystalline melt clasts, which appear isotropic in thin section, are in fact made of exceedingly fine quartz crystals that exhibit micro-Fourier transform infrared (FTIR) and micro-Raman spectra consistent with crystalline quartz. These cryptocrystalline melt clasts are the first melt clasts of any kind to be reported from Flynn Creek impact structure.