1J.B. Creech, 1,2F. Moynier, 3M. Bizzarro
Geochmica et Cosmochmica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2017.04.040]
1Institut de Physique du Globe de Paris, Université Sorbonne Paris Cité, Université Paris Diderot, 1 Rue Jussieu, 75328 Paris cedex 05, France
2Institut Universitaire de France, 75005, Paris, France
3Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen, Denmark
Copyright Elsevier
Stable isotope studies of highly siderophile elements (HSE) have the potential to yield valuable insights into a range of geological processes. In particular, the strong partitioning of these elements into metal over silicates may lead to stable isotope fractionation during metal–silicate segregation, making them sensitive tracers of planetary differentiation processes. We present the first techniques for the precise determination of palladium stable isotopes by MC-ICPMS using a 106Pd–110Pd double-spike to correct for instrumental mass fractionation. Results are expressed as the per mil (‰) difference in the 106Pd/105Pd ratio (δ106Pd) relative to an in-house solution standard (Pd_IPGP) in the absence of a certified Pd isotopic standard. Repeated analyses of the Pd isotopic composition of the chondrite Allende demonstrate the external reproducibility of the technique of ± 0.032‰ on δ106Pd. Using these techniques, we have analysed Pd stable isotopes from a range of terrestrial and extraterrestrial samples. We find that chondrites define a mean δ106Pdchondrite= –0.19 ± 0.05‰ . Ureilites reveal a weak trend towards heavier δ106Pd with decreasing Pd content, similar to recent findings based on Pt stable isotopes (Creech et al., 2017, Geochem. Persp. Let. 3, 94–104), although fractionation of Pd isotopes is significantly less than for Pt, possibly related to its weaker metal–silicate partitioning behaviour and the limited field shift effect. Terrestrial mantle samples have a mean δ106Pdmantle = –0.182 ± 0.130‰ , which is consistent with a late-veneer of chondritic material after core formation.
Day: May 9, 2017
Martian low-temperature alteration materials in shock-melt pockets in Tissint: Constraints on their preservation in shergottite meteorites
1C.R. Kuchka, 1C.D.K. Herd, 1,2E.L. Walton, 3Y. Guan, 3,4Y. Liu
Geochmica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2017.04.037]
1University of Alberta, Department of Earth and Atmospheric Sciences, Edmonton, AB, T6G 2E3, Canada
2MacEwan University, Department of Physical Sciences, Edmonton, AB T5J 4S2, Canada
3Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
4Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Copyright Elsevier
We apply an array of in situ analytical techniques, including electron and Raman microscopy, electron and ion probe microanalysis, and laser ablation mass spectrometry to the Tissint martian meteorite in order to find and elucidate a geochemical signature characteristic of low-temperature alteration at or near the martian surface. Tissint contains abundant shock-produced quench-crystallized melt pockets containing water in concentrations ranging from 73 to 1730 ppm; water content is positively correlated with Cl content. The isotopic composition of hydrogen in the shock-produced glass ranges from δD = 2559 to 4422 ‰. Water is derived from two distinct hydrogen reservoirs: the martian near-surface (>500 ‰) and the martian mantle (-100 ‰). In one shock melt pocket comprising texturally homogeneous vesiculated glass, the concentration of H in the shock melt decreases while simultaneously becoming enriched in D, attributable to the preferential loss of H over D to the vesicle while the pocket was still molten. While igneous sulfides are pyrrhotite in composition (Fe0.88-0.90S), the iron to sulfur ratios of spherules in shock melt pockets are elevated, up to Fe1.70S, which we attribute to shock-oxidation of igneous pyrrhotite and the formation of hematite at high temperature. The D- and Cl-enrichment, and higher oxidation of the pockets (as indicated by hematite) support a scenario in which alteration products formed within fractures or void spaces within the rock; the signature of these alteration products is preserved within shock melt (now glass) which formed upon collapse of these fractures and voids during impact shock. Thermal modeling of Tissint shock melt pockets using the HEAT program demonstrates that the shock melt pockets with the greatest potential to preserve a signature of aqueous alteration are small, isolated from other regions of shock melt, vesicle-free, and glassy.