Mineralogical, crystallographic and redox features of the earliest stages of fluid alteration in CM chondrites

1Isabella Pignatelli, 1Yves Marrocchi, 2,3Enrico Mugnaioli, 4Franck Bourdelle, 5Matthieu Gounelle
Geochimica et Cosmochimica Acta (in Press) Link to Article [http://doi.org/10.1016/j.gca.2017.04.017]
1CRPG, UMR 7358, CNRS – Université de Lorraine, 54500 Vandoeuvre-lès-Nancy, France
2Dipartimento di Scienze Fisiche, della Terre e dell’Ambiente, Università degli Studi di Siena, Via Laterino 8, 53100 Siena, Italy
3Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy
4LGCgE, Université de Lille 1, SN 5, 59655 Villeneuve d’Ascq, France
5IMPMC, MNHN, UPMC, UMR CNRS 7590, 61 rue Buffon, 75005 Paris, France
6InstitutUniversitaire de France, Maison des Universités, 103 bd. Saint-Michel, 75005 Paris
Copyright Elsevier

The CM chondrites represent the largest group of hydrated meteorites and span a wide range of conditions, from less altered (i.e., CM2) down to heavily altered (i.e., CM 1). The Paris chondrite is considered the least altered CM and thus enables the earliest stages of aqueous alteration processes to be deciphered. Here, we report results from a nanoscale study of tochilinite/cronstedtite intergrowths (TCIs) in Paris —TCIs being the emblematic secondary mineral assemblages of CM chondrites, formed from the alteration of Fe-Ni metal beads (type-I TCIs) and anhydrous silicates (type-II TCIs). We combined high-resolution transmission electron microscopy, scanning transmission X-ray microscopy and electron diffraction tomography to characterize the crystal structure, crystal chemistry and redox state of TCIs. The data obtained are useful to reconstruct the alteration conditions of Paris and to compare them with those of other meteorites. Our results show that tochilinite in Paris is characterized by a high hydroxide layer content (n = 2.1-2.2) regardless of the silicate precursors. When examined alongside other CMs, it appears that the hydroxide layer and iron contents of tochilinites correlate with the degree of alteration experienced by the chondrites. The Fe3+/ΣFe ratios of TCIs are high: 8-15% in tochilinite, 33-60% in cronstedtite and 70-80% in hydroxides. These observations suggest that alteration of CM chondrites took place under oxidizing conditions that could have been induced by significant H2 release during serpentinization. Similar results were recently reported in CR chondrites (Le Guillou et al., 2015), suggesting that the process(es) controlling the redox state of the secondary mineral assemblages were quite similar in the CM and CR parent bodies despite the different alteration conditions.

According to our mineralogical and crystallographic survey, the formation of TCIs in Paris occurred at temperatures lower than 100°C, under neutral, slightly alkaline conditions that favored the formation of both tochilinite and cronstedtite. During the course of alteration, the reduction in sulphur activity and/or the decrease of temperature prevented tochilinite crystallization and favoured the formation of cronstedtite and iron hydroxides. We suggest that iron hydroxides probably formed as ferrihydrite and then progressively converted to goethite between 50° and 80°C, a temperature range that is also favourable for cronstedtite formation. The presence of cronstedtite plays a key role in the reconstruction of the alteration history, demonstrating that the alteration of Paris took place by way of serpentinization processes similar to those described on the Earth.

Formation of unequilibrated R chondrite chondrules and opaque phases

1,2K.E. Miller, 1,2D.S. Lauretta, 2,3,4,5H.C. Connolly Jr., 6E.L. Berger, 7K. Nagashima, 2K. Domanik
Geochimica et Cosmochimica Acta (in Press) Link to Article [http://doi.org/10.1016/j.gca.2017.04.009]
1Space Sciences Division, Southwest Research Institute, San Antonio, TX 78238
2Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA
3Department of Geology, School of Earth and the Environment, Rowan University, 201 Mullica Hill Road, Glassboro, N. J. 08028 USA
4Earth and Environmental Sciences, The Graduate Center of the City University of New York, Brooklyn, NY 10016, USA
5Earth and Planetary Science, American Museum of Natural History, Central Park West, New York, NY 10024, USA
6GeoControl Systems Inc. – Jacobs JETS – NASA Johnson Space Center, Houston, TX 77058, USA
7Hawai’i Institute of Geophysics and Planetology, University of Hawai’i at Manoa, Honolulu, HI 96822, USA
Copyright Elsevier

Sulfide assemblages are commonly found in chondritic meteorites as small inclusions in the matrix or in association with chondrules. These assemblages are widely hypothesized to form through pre-accretionary corrosion of metal by H2S gas or through parent body processes. We report here on two unequilibrated R chondrite samples that contain large, chondrule-sized sulfide nodules in the matrix. Both samples are from Mount Prestrud (PRE) 95404. Chemical maps and spot and broad-beam electron microprobe analyses (EMPA) were used to assess the distribution, stoichiometry, and bulk composition of sulfide nodules and silicate chondrules in the clasts. Oxygen isotope data were collected via secondary ion mass spectrometry (SIMS) to assess the relationship of chondrules to other chondrite groups. Scanning electron microscopy (SEM), focused ion beam (FIB), and transmission electron microscopy (TEM) analyses were used to assess fine-scale features and identify crystal structures in sulfide assemblages. Thermodynamic models were used to assess the temperature, sulfur fugacity (fS2), total pressure, dust-to-gas ratio, and oxygen fugacity (fO2) conditions during sulfide nodule and chondrule formation.

The unequilibrated clasts include a mixture of type I and type II chondrules, as well as non-porphyritic chondrules. Chondrule oxygen isotopes overlap with ordinary-chondrite chondrules. Sulfide nodules average 200 µm in diameter, have rounded shapes, and are primarily composed of pyrrhotite, pentlandite, and magnetite. Some are deformed around chondrules in a petrologic relationship similar in appearance to compound chondrules. Both nodules and sulfides in chondrules include phosphate inclusions and Cu-rich lamellae, which suggests a genetic relationship between sulfides in chondrules and in the matrix. Ni/Co ratios for matrix and chondrule sulfides are solar, while Fe and Ni are non-solar and inversely related.

We hypothesize that sulfide nodules formed via pre-accretionary melt processes. During chondrule formation, precursors composed of a mixture of silicate and sulfide material were heated to form immiscible melt droplets, which separated and cooled to form Si-rich chondrules and S-rich nodules. Sulfide melt was stabilized by a high total pressure (∼1 atm) in a dust- or ice-enriched environment. Heating of this material contributed to a high fS2 (2 × 10-3 atm at 1138 °C), and high fO2 (IW – 1 to IW – 4), in an environment with peak temperatures between 1539 °C and 1750 °C. Oxygen isotopic compositions in this region were similar to those recorded by the LL-chondrite chondrules.