Fluid evolution in CM carbonaceous chondrites tracked through the oxygen isotopic compositions of carbonates

1P. Lindgren, 1M.R. Lee, 2N.A. Starkey, 2I.A. Franchi
Geochmica et Cosmochmica Acta (in Press) Link to Article [http://dx.doi.org/10.1016/j.gca.2017.01.048]
1School of Geographical and Earth Sciences, Gregory Building, Lilybank Gardens, Glasgow G12 8QQ
2Planetary and Space Sciences, The Open University, Milton Keynes, MK7 6AA
Copyright Elsevier

The oxygen isotopic compositions of calcite grains in four CM carbonaceous chondrites have been determined by NanoSIMS, and results reveal that aqueous solutions evolved in a similar manner between parent body regions with different intensities of aqueous alteration. Two types of calcite were identified in Murchison, Mighei, Cold Bokkeveld and LaPaz Icefield 031166 by differences in their petrographic properties and oxygen isotope values. Type 1 calcite occurs as small equant grains that formed by filling of pore spaces in meteorite matrices during the earliest stages of alteration. On average, the type 1 grains have a δ18O of ∼32–36 ‰ (VSMOW), and Δ17O of between ∼2 and -1 ‰. Most grains of type 2 calcite precipitated after type 1. They contain micropores and inclusions, and have replaced ferromagnesian silicate minerals. Type 2 calcite has an average δ18O of ∼21–24 ‰ (VSMOW) and a Δ17O of between ∼-1 and -3 ‰. Such consistent isotopic differences between the two calcite types show that they formed in discrete episodes and from solutions whose δ18O and δ17O values had changed by reaction with parent body silicates, as predicted by the closed-system model for aqueous alteration. Temperatures are likely to have increased over the timespan of calcite precipitation, possibly owing to exothermic serpentinisation. The most highly altered CM chondrites commonly contain dolomite in addition to calcite. Dolomite grains in two previously studied CM chondrites have a narrow range in δ18O (∼25–29 ‰ VSMOW), with Δ17O ∼-1 to -3 ‰. These grains are likely to have precipitated between types 1 and 2 calcite, and in response to a transient heating event and/or a brief increase in fluid magnesium/calcium ratios. In spite of this evidence for localised excursions in temperature and/or solution chemistry, the carbonate oxygen isotope record shows that fluid evolution was comparable between many parent body regions. The CM carbonaceous chondrites studied here therefore sample either several parent bodies with a very similar initial composition and evolution or, more probably, a single C-type asteroid.

NanoSIMS Isotope Studies of Rare Types of Presolar Silicon Carbide Grains from the Murchison Meteorite: Implications for Supernova Models and the Role of 14C

1Peter Hoppe, 2Marco Pignatari, 1János Kodolányi, 1Elmar Gröner, 3Sachiko Amari
Geochmica et Cosmochimica Acta (in Press) Link to Article [http://dx.doi.org/10.1016/j.gca.2017.01.051]
1Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
2E. A. Milne Centre for Astrophysics, University of Hull, Hull, HU6 7RX, UK, & NuGrid Collaboration
3McDonnell Center for the Space Sciences and the Physics Department, Washington University, St. Louis, MO 63130, USA
Copyright Elsevier

We have conducted a NanoSIMS ion imaging survey of about 1800 presolar silicon carbide (SiC) grains from the Murchison meteorite. A total of 21 supernova (SN) X grains, two SN C grains, and two putative nova grains were identified. Six particularly interesting grains, two X and C grains each and the two putative nova grains were subsequently studied in greater detail, namely, for C-, N-, Mg-Al-, Si-, S-, and Ca-Ti-isotopic compositions and for the initial presence of radioactive 26Al (half life 716000 yr), 32Si (half life 153 yr), and 44Ti (half life 60 yr). Their isotope data along with those of three X grains from the literature were compared with model predictions for 15 M⊙ and 25 M⊙ Type II supernovae (SNe). The best fits were found for 25 M⊙ SN models that consider for the He shell the temperature and density of a 15 M⊙ SN and ingestion of H into the He shell before the explosion. In these models a C- and Si-rich zone forms at the bottom of the He burning zone (C/Si zone). The region above the C/Si zone is termed the O/nova zone and exhibits the isotopic fingerprints of explosive H burning. Satisfactory fits of measured C-, N-, and Si-isotopic compositions and of 26Al/27Al ratios require small-scale mixing of matter originating from a region extending over 0.2 M⊙ for X and C grains and over 0.4 M⊙ for one of the putative nova grains, involving matter from a thin Si-rich layer slightly below the C/Si zone, the C/Si zone, and the O/nova zone. Simultaneous fitting of 14N/15N and 26Al/27Al requires a C-N fractionation of a factor of 50 during SiC condensation. This leads to preferential incorporation of radioactive 14C (half life 5700 yr) over directly produced 14N and can account for the 14N/15N along with 26Al/27Al ratios as observed in the SiC grains. The good fit for one of the putative nova grains along with its high 26Al/27Al points towards a SN origin and supports previous suggestions that some grains classified as nova grains might be from SNe. Apparent problems with the small-scale mixing scheme considered here are C/O ratios that are mostly <1 if C-, N-, and Si-isotopic compositions and 26Al/27Al ratios are simultaneously matched, underproduction of 32Si, and overproduction of 44Ti. This confirms the limitations of one-dimensional hydrodynamical models for H ingestion and stresses the need to better study the convective-boundary mixing mechanisms at the bottom of the convective He shell in massive star progenitors. This is crucial to define the effective size of the C/Si zone formed by the SN shock. The comparison between the Si isotope data of the SN grains and the models gives a hint that the predicted 30Si is too high at the bottom of the He burning shell.