Kazushige Tomeoka and Ichiro Ohnishi1
Department of Earth and Planetary Sciences, Faculty of Science, Kobe University, Nada, Kobe 657-8501, Japan
1Present address: EM Business Unit, JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan.
Fine-grained rims surrounding chondrules and inclusions in the Mokoia CV3 carbonaceous chondrite can be divided into phyllosilicate-rich and olivine-rich types. We present a petrographic and electron microscopic study of the olivine-rich rims and their host objects (referred to as chondrules/olivine-rich rims). The olivine-rich rims consist mainly of Fe-rich olivine and very minor phyllosilicate (saponite). Their host chondrules contain minor saponite and phlogopite, which resulted from aqueous alteration of anhydrous silicates. Mineralogical and compositional characteristics of the chondrules/olivine-rich rims suggest that they experienced mild thermal metamorphic effects. The rims commonly contain veins of coarse-grained Fe-rich olivine, magnetite, and Fe−(Ni) sulfides.
The chondrules show abundant evidence of alteration along their peripheries, and the alteration textures suggest a mechanism for rim formation by replacement of the chondrules. Initially, enstatite and opaque nodules preferentially reacted to form coarse, platy, Fe-rich olivine crystals, which were subsequently divided into finer grains. Forsterite was also replaced by Fe-rich olivine. As the alteration advanced, these Fe-rich olivines were disaggregated, mixed with simultaneously produced saponite, and formed rims. In contrast, the surrounding matrix shows no evidence of such alteration and metamorphism. These observations indicate that the chondrules/olivine-rich rims did not experience these secondary processes in their present setting.
The results suggest that the chondrules/olivine-rich rims experienced extensive replacement reactions in an environment in which aqueous fluids existed but only in minor amounts. They have probably also undergone simultaneous and/or subsequent mild thermal metamorphism. We suggest that the chondrules/olivine-rich rims are actually clasts transported from a relatively dry region in the parent body that was different from the region where Mokoia was finally lithified.
Reference
Tomeoka K and Ohnishi I (in press) Olivine-rich rims surrounding chondrules in the Mokoia CV3 carbonaceous chondrite: Further evidence for parent-body processes. Geochimica et Cosmochimica Acta
[doi:10.1016/j.gca.2014.04.004]
Copyright Elsevier