Effects of solar activity on production rates of short‐lived cosmogenic radionuclides

1Juraj Beno,1Robert Breier,1Jozef Masarik
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13487]
1Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Commenius University Bratislava, Bratislava, SK‐842 48 Slovakia
Published by arrangement with John Wiley & Sons

The solar activity can be quantified by solar modulation parameter Φ that affects the heliospheric magnetic field. This activity influences the intensity of the galactic cosmic ray (GCR) particle flux within the solar system, and consequently, the differential primary particle spectra depend on the solar modulation parameter Φ (MeV). The modulation parameter Φ shows spatial and temporal variations (Leya and Masarik 2009). Some of the solar activity variations are cyclic and result in measurable effects as for example the 11‐year solar cycle. Variations in solar activity only induce small effects on the production of long‐lived cosmogenic radionuclides. This is due to the fact that activities measured in meteorites usually correspond to saturation values and represent long‐term average values. Long‐lived radionuclides often require millions of years of irradiation by GCR to reach saturation and therefore activity cycles average out. In contrast, one can expect strongly pronounced variations for saturation values caused by primary flux intensity variations, if short‐lived radionuclides with half‐lives ranging from days to a few years are investigated. Short‐lived cosmogenic nuclides were the subject of many experimental and theoretical investigations (e.g., Evans et al. 1982; Spergel et al. 1986; Neumann et al. 1997; Komura et al. 2002; Laubenstein et al. 2012). The aim of this work is to develop formulae for calculating production rates of radionuclides with short half‐life, taking into account temporal variations in the primary cosmic ray intensity. The developed formulae were applied to the Kosice and Chelyabinsk meteorites. The results for the Košice meteorite were already published (Povinec et al. 2015). Here, we give a full explanation of underlying model.


Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s