Comparison of FT‐IR spectra of bulk and acid insoluble organic matter in chondritic meteorites: An implication for missing carbon during demineralization

1Yoko Kebukawa,2Conel M. O’D. Alexander,1George D. Cody
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13302]
1Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington, District of Columbia, 20015 USA
2Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, Washington, District of Columbia, 20015 USA
Published by arrangement with John Wiley & Sons

Past studies of the various separable carbonaceous fractions have been unable to account for all of C in primitive chondrites. In particular, up to 20–50% of the C is lost during acid leaching of bulk samples even after the C in carbonates and soluble organic matter is accounted for. To try to better characterize the nature of this “missing C,” we have compared the bulk infrared (IR) absorption spectra of a number of primitive chondrites with those of their previously reported insoluble organic matter (IOM). The aliphatic C–H stretching bands, in particular, allow us to compare the molecular structures of bulk C with that of IOM. The spectral differences between bulk C and IOM reflect “missing C” phases that were lost during acid leaching, although we cannot completely exclude the possibility that the OM was modified after demineralization. Comparing IR spectra of bulk meteorite powder and IOM suggests that the missing C varies in its molecular structure, and that mildly thermally metamorphosed type 3 chondrites tend to be richer in an aliphatic fraction with lower CH2/CH3 ratios, relative to IOM, compared to aqueously altered carbonaceous chondrites (CI/CM/CR). The missing C is most likely released from acid‐labile functional groups, such as esters, acetals, and amides, during demineralization, although it cannot be ruled out that some fraction of the missing C is in small grains that are difficult to recover from suspension, or in water‐soluble compounds trapped in phyllosilicates.

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s